2 * Licensed to the Apache Software Foundation (ASF) under one
3 * or more contributor license agreements. See the NOTICE file
4 * distributed with this work for additional information
5 * regarding copyright ownership. The ASF licenses this file
6 * to you under the Apache License, Version 2.0 (the
7 * "License"); you may not use this file except in compliance
8 * with the License. You may obtain a copy of the License at
10 * http://www.apache.org/licenses/LICENSE-2.0
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
19 package org.apache.hadoop.hive.ql.exec.vector.expressions.gen;
21 import java.sql.Timestamp;
23 import org.apache.hadoop.hive.ql.exec.vector.expressions.VectorExpression;
24 import org.apache.hadoop.hive.ql.exec.vector.expressions.NullUtil;
25 import org.apache.hadoop.hive.ql.exec.vector.*;
26 import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
27 import org.apache.hadoop.hive.ql.exec.vector.VectorExpressionDescriptor;
30 * Generated from template ColumnCompareTimestampColumn.txt, which covers binary arithmetic
31 * expressions between columns.
33 public class <ClassName> extends VectorExpression {
35 private static final long serialVersionUID = 1L;
39 private int outputColumn;
41 public <ClassName>(int colNum1, int colNum2, int outputColumn) {
42 this.colNum1 = colNum1;
43 this.colNum2 = colNum2;
44 this.outputColumn = outputColumn;
47 public <ClassName>() {
51 public void evaluate(VectorizedRowBatch batch) {
53 if (childExpressions != null) {
54 super.evaluateChildren(batch);
57 <InputColumnVectorType1> inputColVector1 = (<InputColumnVectorType1>) batch.cols[colNum1];
58 TimestampColumnVector inputColVector2 = (TimestampColumnVector) batch.cols[colNum2];
59 LongColumnVector outputColVector = (LongColumnVector) batch.cols[outputColumn];
60 int[] sel = batch.selected;
62 <OperandType>[] vector1 = inputColVector1.vector;
63 long[] outputVector = outputColVector.vector;
65 // return immediately if batch is empty
70 outputColVector.isRepeating =
71 inputColVector1.isRepeating && inputColVector2.isRepeating
72 || inputColVector1.isRepeating && !inputColVector1.noNulls && inputColVector1.isNull[0]
73 || inputColVector2.isRepeating && !inputColVector2.noNulls && inputColVector2.isNull[0];
76 NullUtil.propagateNullsColCol(
77 inputColVector1, inputColVector2, outputColVector, sel, n, batch.selectedInUse);
79 /* Disregard nulls for processing. In other words,
80 * the arithmetic operation is performed even if one or
81 * more inputs are null. This is to improve speed by avoiding
82 * conditional checks in the inner loop.
84 if (inputColVector1.isRepeating && inputColVector2.isRepeating) {
85 outputVector[0] = vector1[0] <OperatorSymbol> inputColVector2.<GetTimestampLongDoubleMethod>(0) ? 1 : 0;
86 } else if (inputColVector1.isRepeating) {
87 if (batch.selectedInUse) {
88 for(int j = 0; j != n; j++) {
90 outputVector[i] = vector1[0] <OperatorSymbol> inputColVector2.<GetTimestampLongDoubleMethod>(i) ? 1 : 0;
93 for(int i = 0; i != n; i++) {
94 outputVector[i] = vector1[0] <OperatorSymbol> inputColVector2.<GetTimestampLongDoubleMethod>(i) ? 1 : 0;
97 } else if (inputColVector2.isRepeating) {
98 <OperandType> value2 = inputColVector2.<GetTimestampLongDoubleMethod>(0);
99 if (batch.selectedInUse) {
100 for(int j = 0; j != n; j++) {
102 outputVector[i] = vector1[i] <OperatorSymbol> value2 ? 1 : 0;
105 for(int i = 0; i != n; i++) {
106 outputVector[i] = vector1[i] <OperatorSymbol> value2 ? 1 : 0;
110 if (batch.selectedInUse) {
111 for(int j = 0; j != n; j++) {
113 outputVector[i] = vector1[i] <OperatorSymbol> inputColVector2.<GetTimestampLongDoubleMethod>(i) ? 1 : 0;
116 for(int i = 0; i != n; i++) {
117 outputVector[i] = vector1[i] <OperatorSymbol> inputColVector2.<GetTimestampLongDoubleMethod>(i) ? 1 : 0;
122 /* For the case when the output can have null values, follow
123 * the convention that the data values must be 1 for long and
124 * NaN for double. This is to prevent possible later zero-divide errors
125 * in complex arithmetic expressions like col2 / (col1 - 1)
126 * in the case when some col1 entries are null.
128 NullUtil.setNullDataEntriesLong(outputColVector, batch.selectedInUse, sel, n);
132 public int getOutputColumn() {
137 public String getOutputType() {
142 public String vectorExpressionParameters() {
143 return "col " + colNum1 + ", col " + + colNum2;
147 public VectorExpressionDescriptor.Descriptor getDescriptor() {
148 return (new VectorExpressionDescriptor.Builder())
150 VectorExpressionDescriptor.Mode.PROJECTION)
153 VectorExpressionDescriptor.ArgumentType.getType("<OperandType>"),
154 VectorExpressionDescriptor.ArgumentType.getType("timestamp"))
155 .setInputExpressionTypes(
156 VectorExpressionDescriptor.InputExpressionType.COLUMN,
157 VectorExpressionDescriptor.InputExpressionType.COLUMN).build();